Dual Philosophy in Death Receptor Signalling
نویسندگان
چکیده
Tumour necrosis factor (TNF) is the founding member of a cytokine family with important roles in both, physiology and pathological conditions. The two seemingly opposing cellular responses to stimulation by TNF itself are death and induction of pro-inflammatory signalling. TNF and other TNF superfamily (SF) members signal by crosslinking their cognate receptors. These form part of the TNF receptor SF (TNFRSF). Members of this family have between two and six characteristic cysteine-rich repeats in their extracellular domain. These repeats are crucial for receptor-ligand interaction. Members of the TNFRSF come in three flavours: as type I transmembrane proteins, attached to the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor, or as secreted soluble proteins. The latter receptors act as decoys for their respective ligands. To date 30 members of the TNFRSF are known. Six of them form part of the subfamily of the death receptors. Death receptors are characterised by the presence of an intracellular death domain (DD). Amongst the death receptors there are again at least two subclasses, the ones which recruit the Fas-Associated Death Domain (FADD) and the ones that recruit the TNFR-Associated Death Domain (TRADD) protein. The primary function of FADD-recruiting receptors is to induce apoptosis whilst the primary function of the TRADD recruiters is to activate pro-inflammatory signalling (Fig. 1). However, from a second platform both systems are also capable of triggering the respective other signalling outcome.
منابع مشابه
Apoptosis: from Signalling Pathways to Therapeutic Tools
Apoptosis or programmed cell death is a gene regulated phenomenon which is important in both physiological and pathological conditions. It is characterized by distinct morphological features including chromatin condensation, cell and nuclear shrinkage, membrane blebbing and oligonucleosomal DNA fragmentation. Although, two major apoptotic pathways including 1) the death receptor (extrinsic) and...
متن کاملI-7: Maternal Signalling to the Placenta
Background: Though it is well established that maternal blood-borne signals influence highly the growth of the placenta, the mechanisms are not known. In vitro trophoblast culture models are limited by an inability to reconstruct the polarised bilayer of the human hemochorial placenta. We have used a first trimester villous tissue explant system to investigate how growth factors interact with p...
متن کاملReelin Signalling Pathway and Mesial Temporal Lobe Epilepsy: A Causative Link?
Mesial temporal lobe epilepsy (MTLE) is the most frequent form of partial epilepsy. Granule cell dispersion, resulting from aberrant neuronal migration in the hippocampus, is pathognomonic of MTLE. Reelin, a secreted neurodevelopmental glycoprotein has a crucial role in controlling the radial migration of neurons. Several animal studies have implicated Reelin in the MTLE pathogenesis. The aim o...
متن کاملMembrane Trafficking of Death Receptors: Implications on Signalling
Death receptors were initially recognised as potent inducers of apoptotic cell death and soon ambitious attempts were made to exploit selective ignition of controlled cellular suicide as therapeutic strategy in malignant diseases. However, the complexity of death receptor signalling has increased substantially during recent years. Beyond activation of the apoptotic cascade, involvement in a var...
متن کاملFADD/MORT1 regulates the pre-TCR checkpoint and can function as a tumour suppressor.
Productive rearrangement of the T-cell receptor (TCR) beta gene and signalling through the pre-TCR-CD3 complex are required for survival, proliferation and differentiation of T-cell progenitors (pro-T cells). Here we identify a role for death receptor signalling in early T-cell development using a dominant-negative mutant of the death receptor signal transducer FADD/MORT1 (FADD-DN). In rag-1(-/...
متن کامل